חAmIBIA UחIVERSITY OF SCIEПCE AПD TECHMOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES
 DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION : BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 7
COURSE CODE: MMP701S	COURSE NAME: MATHEMATICAL METHODS IN PHYSICS
SESSION: JULY 2019	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	Prof Dipti R Sahu
MODERATOR:	Dr Habatwa V Mweene

INSTRUCTIONS

1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly.

PERMISSIBLE MATERIALS

Non-programmable Calculators

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

Question 1

1.1 Find the solution of the exponential decay equation $N^{\prime}=-\mathrm{kN}$ with initial condition $N(0)=N_{0}$
1.2 Show that in a radioactive material, the decay constant k and the half-life τ are related by the equation

$$
\mathrm{k} \tau=\ln 2
$$

1.3 Find the differential equation which satisfy $y^{\prime}=f(y)$ whose solution is $y(t)=4 e^{2 t}+3$
1.4 Solve $\frac{d y}{d x}+5 y=-2$

Question 2

2.1 Assume an object weighing 2 lb stretches a spring 6 in . Find the equation of motion if the spring is released from the equilibrium position with an upward velocity of $16 \mathrm{ft} / \mathrm{sec}$. What is the period of the motion? Given acceleration due to gravity is $32 \mathrm{ft} / \mathrm{sec}^{2}$.
2.2 Solve $Y^{\prime \prime}+4 Y=e^{3 x}$

Question 3
3.1 Find K if

$$
A=\left[\begin{array}{cc}
k-2 & 1 \tag{5}\\
5 & k+2
\end{array}\right] \text { is singular }
$$

3.2 Solve the following system of equations using Gauss-Jordan elimination:

$$
\begin{align*}
& -3 x-2 y+4 z=9 \tag{10}\\
& 3 y-2 z=5 \\
& 4 x-3 y+2 z=7
\end{align*}
$$

3.3 Using the Laplace transform method find the solution for the following equation

$$
\frac{\partial}{\partial t} y(t)=e^{(-3 t)}
$$

with initial conditions $y(0)=4$ and $D y(0)=0$

Question 4

4.1 Given the unit vector basis as

$$
\mathrm{V}_{1}=\left(\begin{array}{l}
1 \tag{5}\\
0 \\
0
\end{array}\right) ; \quad \mathrm{V}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) ; \quad \mathrm{V}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

express the vector $\mathrm{V}_{4}=\left(\begin{array}{c}5 \\ -3 \\ 7\end{array}\right)$ as a linear combination of the above basis
4.2 Convert the set $V=\left\{1, t, t^{2}\right\}$ into the orthonormal set $E=\left\{e_{1}, e_{2}, e_{3}\right\}$ where $t \in(-1,1)$.
4.3 Express first three Legendre polynomials $\mathrm{P}_{0}(\mathrm{x}), \mathrm{P}_{1}(\mathrm{x})$ and $\mathrm{P}_{2}(\mathrm{x})$ using the given function

$$
P_{\prime \prime}(x)=\frac{(2 n)!}{2^{\prime \prime}(n!)^{2}}\left[x^{\prime \prime}-\frac{n(n-1)}{2(2 n-1)} x^{n-2}+\frac{n(n-1)(n-2)(n-3)}{2 \times 4(2 n-1)(2 n-3)} x^{n-4}-\ldots\right]
$$

